Gleichungen ist es auch bei Ungleichungen möglich diese in äquivalente Ungleichungen umzuformen. Äquivalente Ungleichungen haben die gleichen Lösungsmengen
Ein Redirect auf sich selbst? --Okatjerute !?* 15:12, 19. Okt 2004 (CEST)
Markow-Ungleichung steht für: Markow-Ungleichung (Stochastik), eine Ungleichung aus der Wahrscheinlichkeitstheorie Markow-Ungleichung (Analysis), eine
Ungleichungen in Vierecken sind Ungleichungen, die verschiedene Größen in einem Viereck zueinander in Beziehung setzen. Die Ungleichungen gelten, wenn
Es wäre schön, wenn in den Ungleichungen nicht das d für Metrik verwendet werden würde, da das mit der Vierecksseite d verwechselt werden kann. Gibts
integrierbare Zufallsvariablen erhält man: Diese drei Ungleichungen werden durch die Hölder-Ungleichung verallgemeinert. Auf quadratische Matrizen angewandt
Die Besselsche Ungleichung beschreibt in der Funktionalanalysis den Sachverhalt, dass ein Vektor eines Hilbertraums mindestens so „lang“ wie seine Orthogonalprojektion
Youngsche Ungleichung steht für: Youngsche Ungleichung (Produkt), eine Ungleichung zwischen einem Produkt und einer Summe Faltungsungleichung von Young
höldersche Ungleichung, benannt nach Otto Hölder, zusammen mit der Minkowski-Ungleichung und der jensenschen Ungleichung zu den fundamentalen Ungleichungen für
In der Stochastik ist die Tschebyscheff-Ungleichung oder Tschebyschow-Ungleichung eine Ungleichung, die zur Abschätzung von Wahrscheinlichkeiten verwendet
Multipliziert man diese Ungleichungen für , so erhält man , also und somit . Der Beweis aus der jensenschen Ungleichung und der Polya-Beweis sind
Beim Lösen von Ungleichungen über den reellen Zahlen versucht man, eine unübersichtliche Ungleichung so weit zu vereinfachen, dass sich einfache Aussagen
Mathematik versteht man unter der bernoullischen Ungleichung eine einfache, aber wichtige Ungleichung, mit der sich eine Potenzfunktion nach unten abschätzen
Bonferroni-Ungleichungen werden nicht unbedingt zurecht nach Carlo Emilio Bonferroni benannt. Bonferroni war vermutlich nicht der Urheber dieser Ungleichungen,
Die Minkowski-Ungleichung (nach Hermann Minkowski) ist eine Aussage der Funktionalanalysis. Sie besagt, dass die Dreiecksungleichung in den Lp-Räumen
Die Cramér-Rao-Ungleichung, benannt nach den beiden Mathematikern Harald Cramér und Calyampudi Radhakrishna Rao, liefert in der mathematischen Statistik
Allgemeinheit Grundlage vieler bedeutender Ungleichungen, vor allem in der Analysis und Informationstheorie. Die Ungleichung ist nach dem dänischen Mathematiker
man Ungleichungen. Beim Lösen einer Gleichung bzw. Ungleichung sucht man jene Werte aus dem Grundbereich, für welche die Gleichung bzw. Ungleichung in
Die Kolmogorow-Ungleichung ist eine sogenannte Maximal-Ungleichung aus der Stochastik. Sie wurde Ende der 1920er Jahre vom russischen Mathematiker Andrei
Bernstein-Ungleichung steht für: Bernstein-Ungleichung (Stochastik), eine Ungleichung aus der Wahrscheinlichkeitstheorie Bernstein-Ungleichung (Analysis)
Äquivalenzumformungen sind die wichtigste Methode zum Lösen von Gleichungen und Ungleichungen. Eine Äquivalenzumformung ist beispielsweise die Addition oder Subtraktion
Die Muirhead-Ungleichung ist eine Verallgemeinerung der Ungleichung vom arithmetischen und geometrischen Mittel. Für einen gegebenen reellen Vektor
Maximalungleichung ist eine der zentralen Ungleichungen in der Stochastik. Neben der Burkholder-Ungleichung ist sie eine der gängigsten Berechnungsmethoden
. Summiert man die Ungleichungen und teilt man das Ergebnis durch die Anzahl der Versuche, so erhält man die Bellsche Ungleichung für Mittelwerte von
zum Lösen von Gleichungen (Ungleichungen) sind Äquivalenzumformungen. Sie verändern die Lösungsmenge der Gleichung (Ungleichung) nicht. Beispiele für Äquivalenzumformungen